
Grasp Proposal Networks: An End-to-End Solution
for Visual Learning of Robotic Grasps

Chaozheng Wu∗1 Jian Chen∗1 Qiaoyu Cao1 Jianchi Zhang1

Yunxin Tai1 Lin Sun 2 Kui Jia1

1South China University of Technology 2Samsung, USA
{eeczwu,ee_chenjian,eeqycao,msj.c.zhang}@mail.scut.edu.cn

yunxintai@gmail.com lin1.sun@samsung.com kuijia@scut.edu.cn

Abstract

Learning robotic grasps from visual observations is a promising yet challenging
task. Recent research shows its great potential by preparing and learning from
large-scale synthetic datasets. For the popular, 6 degree-of-freedom (6-DOF)
grasp setting of parallel-jaw gripper, most of existing methods take the strategy of
heuristically sampling grasp candidates and then evaluating them using learned
scoring functions. This strategy is limited in terms of the conflict between sampling
efficiency and coverage of optimal grasps. To this end, we propose in this work
a novel, end-to-end Grasp Proposal Network (GPNet), to predict a diverse set of
6-DOF grasps for an unseen object observed from a single and unknown camera
view. GPNet builds on a key design of grasp proposal module that defines anchors
of grasp centers at discrete but regular 3D grid corners, which is flexible to support
either more precise or more diverse grasp predictions. To test GPNet, we contribute
a synthetic dataset of 6-DOF object grasps; evaluation is conducted using rule-based
criteria, simulation test, and real test. Comparative results show the advantage of
our methods over existing ones. Notably, GPNet gains better simulation results via
the specified coverage, which helps achieve a ready translation in real test. We will
make our dataset publicly available.

1 Introduction

Robotic object grasping is one of the basic functions that a robot system aims to emulate our human
beings. The task is challenging due to imprecision in sensing, planning, and actuation, and also due to
the possible absence of knowledge about physical properties of the object (e.g., mass distribution and
surface material). It was recently demonstrated that deep learning on annotated datasets of robotic
grasp can achieve good robustness and generalization [1, 2, 3]. Methods based on synthetic data (e.g.,
object CAD models and the correspondingly rendered images) [4, 5, 6] show particular promise,
as they can ideally generate as many as infinite numbers of grasp annotations. Even though there
exists a risk of domain discrepancy between simulated and real environments, deep learning models
trained on such synthetic datasets show remarkable performance on real-world grasp testings, with
better generalization to novel object instances and categories [4, 5]. In this work, we study deep
learning optimal grasp configurations from synthetic images, with a particular focus on grasping
with a parallel-jaw gripper, whose parametrization is typically of 6 degrees of freedom (6-DOFs),
including 3D gripper center of the grasping location and 3D gripper orientation.

∗Contributed equally.

ar
X

iv
:2

00
9.

12
60

6v
1

 [
cs

.C
V

]
 2

6
Se

p
20

20

Optimal grasp configurations depend on working conditions in real-world environments. In many
cases, due to kinematical constraints of robotic arms and/or possible collisions, a diverse set of
multiple grasp predictions are expected such that there exist grasps among the predictions that can
be successfully actuated. There generally exist two strategies to predict multiple grasps for a given
object. The first strategy is used in [7, 8], which samples grasp candidates from observed object
surface via heuristic manners, and then evaluates them using learned scoring functions; alternatively,
full object surface model is assumed in [6, 9] to sample more reliable grasp candidates during the
test phase. The second strategy learns to directly predict multiple grasps. We argue that the first
strategy is limited in the following aspects: (1) sampling can only be made finite, making it possible
to miss optimal grasps, (2) increasing the density of grasp candidate sampling increases linearly
the computation costs of both the sampling itself and the subsequent grasp estimation — note that
sampling itself costs significantly [7]. To address the limitation, a first attempt is made in [10] that
learns a latent grasp space via variational auto-encoder (VAE), and promising grasps can be obtained
by sampling from the learned latent space. However, we empirically find that grasps given by the
VAE model of [10] tend to focus on a single mode, e.g., centers of their predicted grasps are close to
the object mass center; in order words, their generated grasps are less diverse.

In this work, we propose a novel end-to-end solution of Grasp Proposal Network (GPNet), in order
to predict a diverse set of 6-DOF grasps for an unseen object observed from a single and unknown
camera view. Figure 1 illustrates our pipeline. GPNet builds on a key design of grasp proposal module
that defines anchors of grasp centers at a discrete set of regular 3D grid corners. It stacks three
headers on top of the grasp proposal module, which for any grasp proposal, are trained to respectively
specify antipodal validity [11], regress a grasp prediction and score the confidence of final grasp.
The proposed GPNet is in fact flexible enough to support either more precise or more diverse grasp
predictions, by focusing or spreading the anchors of grasp centers in the 3D space. To test GPNet,
we contribute a synthetic dataset of 6-DOF object grasps, including 22.6M annotated grasps for 226
object models. We evaluate our proposed GPNet in terms of rule-based criteria, simulation test, and
also real test. Experiments show the advantages of our method over existing ones.

2 Related Works

Grasp Annotations and Datasets Existing datasets for robotic grasp learning are annotated based
on four types: (1) human labeling by either grasping objects in real environments [1, 12] or by
demonstrating grasps in simulation engines [6], (2) automating physical grasp trials by robots
[2, 3, 13], (3) analytic computation of grasp quality metrics [14, 4], and (4) automating simulation
of physical grasps in physics engines [5, 6]. The last two approaches are related to this work by
annotating on synthetic data. Particularly, Dex-Nets [14, 4] compute analytic grasp qualities to obtain
millions of annotations over more than 10K object models, and Jacquard [5] simulates grasp trials
in physics engine to obtain a similar amount of annotations. However, their annotations are only of
simplified planar grasps. Recent works [10, 9] present synthetic datasets of 6-DOF grasps, whose
testing environments are not publicly available yet to benchmark different methods.

Deep Visual Grasp Learning Given availability of synthetic grasp datasets, deep grasp learning is
drawing attention recently in both robotics and vision communities. Borrowing ideas from 2D object
detection [15, 16, 17], Jiang et al. propose 2D oriented rectangles to represent simplified grasps, and
Chu et al. [18] re-cast angle regression as classification by discretizing the space of in-plane rotation
and then utilizing Faster-RCNN [15] to detect multiple grasp poses from a single RGB-D image. A
generative approach is also proposed in [19] to directly predict a grasp pose at each pixel of feature
maps via fully-convolutional network. Redmon and Angelova [20] propose a one-stage method to
directly regress grasp poses, similar to [16]. To take the full object surface into account, Yan et al.
[6] and Merwe et al. [21] present geometry-aware grasp evaluation methods respectively via 3D
occupancy grid and signed distance function.

3 The Problem of Visual Grasp Learning

We consider in this work an ideal but common setting of grasping a singulated object resting on a
plane of table using an end-effector of parallel-jaw gripper. The problem concerns with estimation of
parameterized grasp poses in a 3D coordinate space.

2

3.1 Parameterizations and Learning
Given an object O with its mass center z ∈ R3, denote 3D shape of the object surface as S . Let z be
the origin of world coordinate system. A grasp based on parallel-jaw gripper can be parameterized as
g = (x, θ) ∈ SE(3), where x = (x, y, z) ∈ R3 locates the center of two parallel jaws, θ ∈ [−π, π]3

is the Euler angle vector representing 3D orientation of the gripper — we note that an additional
freedom of gripper opening width w ∈ R+ is sometimes used in the literature. An illustration of such
a 6-DOF grasp parameterization is given in the supplementary material. Euler angle representation of
3D pose is physically intuitive but disadvantageous in that it has singularities when implementing
rotations; in this work, we implement 3D orientation of a grasp pose using unit quaternion [22]. Other
than grasp parameterization, success or failure of a grasp also depends on physical properties of the
object, such as mass distribution and surface material. For simplicity, we assume in this work a fixed
friction coefficient γ for the surface material, and that the mass center z coincides with geometric
center of the shape S. We do not consider the uncertainty when measuring S and g.

Consider a vision-guided robotic grasp scenario where a camera points towards the grasp environment
(e.g., centroid of the object). The objective of visual grasp learning is to estimate from visual
observations optimal grasp configurations that specify where and how to grasp the object. For
a depth camera, denote the point cloud representation of the visible surface of an object O as
I = {pi ∈ R3}ni=1, where n is the number of observed points and pi contains the 3D coordinates of
the ith point. Depending on availability of grasp candidates {g ∈ G}, which can be sampled from
the object surface S as described shortly, the task of visual grasp learning can be formalized as either
learning a scoring function

Φ : Rn×3 × (R3 × [−π, π]3)→ [0, 1], (1)

which ranks {g ∈ G} to specify an optimal grasp [4], or learning a regression function

Ψ : Rn×3 → R3 × [−π, π]3, (2)

which directly estimates one or multiple grasps [5]. To evaluate any estimated ĝ = (x̂, θ̂), we
consider in this work the following three criteria.

Rule-based evaluation Given ground-truth positive grasps {g∗+ = (x∗+, θ∗+) ∈ G∗+} annotated
onO, ĝ is counted as a success if it satisfies the conditions of ‖x̂−x∗+‖2 ≤ ∆x and ‖θ̂− θ∗+‖∞ ≤
∆θ for any one of {g∗+ ∈ G∗+}.
Evaluation via simulation For any estimated ĝ, we conduct a simulation whose environment is
specified shortly in Section 3.2. It is counted as a success if the simulated gripper can lift the object
using ĝ to a certain height and stably move it around.

Real test For any estimated ĝ, robot agents the top confident grasp without physics violation. Once
it elevates objects over 30cm and returns to original state, this run is treated as a success.

As indicated by functions (1) and (2), the nature of visual grasp learning is to build mapping relations
from observed shape geometries of object surface to physically (and semantically) sensible grasp
configurations. The task is challenging due to the following factors: (1) physical properties such
as mass distribution and surface material are usually unavailable; (2) for a given object, optimal
grasps are not uniquely defined, and the ambiguity is even worse when considering the gap between
physical/geometric and semantic grasp annotations; (3) grasps of an object can only be annotated
up to a discrete and possibly sparse set, which causes difficulties for both training and evaluation
of visual grasp learning; (4) there exists an issue of transferability from grasp estimations learned
from synthetic data to use in real-world testing. Nevertheless, promising results in recent works
[4, 5, 6, 10] demonstrate the advantage of visual grasp learning over the traditional pipeline composed
of separate steps of object detection, segmentation, registration, and pose estimation. We thus aim for
taking visual grasp learning as an isolated machine learning task.

3.2 Synthetic Dataset Construction
We summarize our synthetic dataset of object grasps that is constructed using physics engine of
PyBullet [23]. More details of the dataset acquisition framework can be found in the supplemental
material. Our dataset is based on ShapeNetSem [24], which contains annotations of physical attributes
(e.g., material density and static friction coefficient) essential for our grasp annotation. We use 226
CAD models of 8 categories (bowl, bottle, mug, cylinder, cuboid, tissue box, sodacan, and toy car)
in ShapeNetSem as our models of interest for simulated grasps. We totally obtain 22.6M grasp

3

annotations (∼ 100, 000 per object), of which ∼ 23.6% are positive annotations and ∼ 76.4% are
negative ones. For each grasp candidate, we also compute analytic quality score based on [25]. To
prepare inputs of visual grasp learning, we render RGB-D images under 1000 arbitrary views for
each object model. To use the dataset, we split object models (of all categories) into training set
(196 objects) and test set (30 objects). This is to prepare a testing scenario of generalization to novel
object instances.

4 Grasp Proposal Networks

PointNet++

Pruning

3D Grid Grasp Proposal Module

Point-wise FeaturesObject point cloud

Grasp
Regression

Satisfy

Proposal-wise
Features

G|C

G|C : Gathering and Concatenating

Antipodal
Classifier

G|C Grasp
Classifier

Grasp Classifier Module

Figure 1: Overview of our GPNet architecture. Given a point cloud I of partial object surface with n points.
GPNet uses a backbone network of PointNet++ to extract point-wise features. In the Grasp Proposal module,
m = r3 anchors {x̃j}mj=1 of grasp centers are defined at a discrete set of regular 3D grid. For each pi in I, we
connect it with all anchors and get a set of grasp proposals Gi = {(pi, x̃j)}mj=1, resulting in a number of n×m
grasp proposals in total. In this work, two physically sensible schemes are designed to prune most of the n×m
grasp proposals to a number of n′ ×m′. With these grasp proposals, we gather the features from PointNet++
associated with the anchor coordinates to predict a diverse set of precise grasps using three headers, which are
trained to respectively specify antipodal validity, regress grasp prediction, and score grasp confidence.

To implement visual grasp learning, we propose in this work a Grasp Proposal Network (GPNet)
that aims to predict a diverse set of 6-DOF grasps {ĝ} for an object O, given a point cloud I of
partial object surface observed from a single and unknown camera view. Our GPNet thus learns
an instantiation of the function (2). In GPNet, we use a re-parametrization (c1, c2, φ) ∈ R7 of
g = (x, θ) (an illustration can be found in the supplemental material), where (c1, c2) denote the two
contact points on the surface, which already determine the grasp center x = (c1 + c2)/2, and the
“roll” and “yaw” orientations of θ, and φ denotes the left freedom of “pitch” orientation 1. Replacing
c2 with the center x gives an equivalent parametrization g = (c1,x, φ).

Given the new grasp parameterizations, GPNet builds on a key idea of defining anchors of grasp
centers at a discrete set of regular 3D grid positions {x̃j}mj=1, which together with each pi of observed
surface points {pi}ni=1, give a set Gi of grasp proposals {(pi, x̃j)}mj=1 short of the freedom of angle
φ; we train the GPNet to predict an angle φ̂ and an offset ∆x̃j

∈ R3 for each x̃j . Our scheme
supports natural variants that favor either more precise or more diverse grasp proposals, by focusing
or spreading the grid positions {x̃j}mj=1 in the 3D space, as presented shortly in Section 4.1. For
any observed pi, we learn a feature fi based on points of {pi}ni=1 in its local neighborhood via an
anchor-dependent fashion, which together with coordinates of an anchor x̃j , form features of the
grasp proposal (pi, x̃j) .

As illustrated in Figure 1, our proposed GPNet stacks three headers on top of the grasp proposal
module and PointNet++ based feature extractor [26]. For any input proposal (pi, x̃j), the three
headers are trained to respectively specify its antipodal validity [11], regress a grasp prediction

1Note that (c1, c2) also determine an additional freedom of the width w = ‖c2− c1‖ of parallel-jaw gripper,
which is only involved in training and inference of GPNet, but not used in evaluation of predicted grasps.
Nevetheless, we still write g = (c1, c2, φ) or g = (c1,x, φ) with a slight abuse of notation.

4

ĝ = (pi, x̂ = x̃j + ∆x̃j
, φ̂), and score confidence of ĝ. Details of our contributed components in

GPNet are specified as follows.

4.1 Diverse and Flexible Grasp Proposals via 3D Grid Anchors
Due to kinematical constraints of robotic arms and/or possible collisions in working environments,
grasp predictions are in many cases expected to be diversified, such that there exist grasps among
the predictions that can be successfully actuated. Our grasp proposal module in GPNet is specially
designed for this purpose. Inspired by anchor based 2D object detections [15, 17], we take into
account the physical nature of 6-DOF grasps and define anchors of grasp centers at regular grid
corners in a normalized 3D space, whose size is assumed to fit in the objects of interest. Figure 1
gives an illustration. Specifically, we evenly partition the normalized 3D space into r × r × r cells at
m = r3 grid corners, giving rise to the anchors {x̃j}mj=1. A set Gi of grasp proposals {(pi, x̃j)}mj=1

are formed by connecting each pi in observed surface points {pi}ni=1 with the m anchors. Such
proposals are short of the freedom of angle φ; we train the GPNet to predict an angle φ̂ and an offset
∆x̃j

∈ R3 for each x̃j , as described shortly in Section 4.4.

The total number of grasp proposals defined above could be as large as n×m, we design in GPNet
two physically sensible schemes to efficiently prune them during training and/or test phases. Since
the object surface model S is available during training, our first scheme simply removes those grid
corners falling outside of S. Our second scheme relies on the antipodal constraint of contact points
[11]. In the training phase, given the annotated ground-truth grasps {g∗ ∈ G∗}, we only keep those
proposals in {Gi = {(pi, x̃j)}mj=1}ni=1 that are close to any g∗, and label them as positive samples
of antipodal validity, while dropping other proposals from which we also sample a fixed subset as
negative samples of antipodal validity; we train a classifier (the first header of GPNet) to tell validity
of antipodal constraint for any grasp proposal in the test phase, in order to improve the inference
efficiency. Note that all ground-truth grasp annotations satisfy antipodal constraint. We empirically
find that our schemes remove at least 86.4% of the total n×m grasp proposals during training.

Variants for Precise or Diverse Proposals We note that for each anchor x̃j , the range of offset value
∆x̃j

∈ R3 to be regressed depends on the resolution r of grid cells in the 3D proposal space, which
in turn determines the precision of regression made by GPNet. Increasing the resolution r would give
more precise predictions, however, it increases the number of grasp proposals cubically as m = r3.
When grasp diversity is not an issue in some working environments, our proposed module can be
adapted by focusing the fixed m number of grid corners close to mass center of the object, which
is simply assumed to the origin of the 3D coordinate space in this work, thus potentially improving
prediction precision at the sacrifice of reduced diversity.

4.2 Extraction of Grasp Features from Anchor-dependent Local Surface Points
For any grasp proposal (pi, x̃j), we use an anchor-dependent manner to determine a local point
neighborhood N (pi) around pi, as illustrated in Figure 2. The neighborhood N (pi) includes some
surface points in the observed {pi}ni=1, based on which we use a backbone network of PointNet++
[26] to extract a feature vector fi for N (pi).

Our adaptive neighborhood is aligned with the use of parallel-jaw gripper. Intuitively, the gripper
would hold an object most firmly when one jaw of the gripper touches the object surface at pi from
direction perpendicular to the surface tangent plane at pi. We thus determine whether to include
any pi′ in the neighborhood N (pi) by comparing the angle between vectors

−−→
x̃jpi = pi − x̃j and

−−−→pipi′ = pi′ − pi, together with the distance d(pi′ ,pi) = ‖pi′ − pi‖, giving the criterion

N (pi, x̃j) = {pi′ | d(pi′ ,pi) · (| cos(−−−→pipi′ ,
−−→
x̃jpi)|+ 1) ≤ ε} (3)

where ε is a threshold to be specified. The criterion (3) generally gives an anisotropic neighborhood
as shown in Figure 2. We concatenate feature fi ofN (pi) with the anchor coordinates to form [fi; x̃j]
as the feature of grasp proposal (pi, x̃j). Experiments in Section 5 show that anchor coordinates
provide additional information for grasp regression.

4.3 Scoring of Regressed Grasps
A module of grasp classification is essential to score predicted grasps and suggest which ones are
most likely to be successfully actuated. In [18, 20, 19], a grasp classifier parallel to grasp regression
is designed, which has the shortcoming that the regressed offsets are not considered in grasp scoring.

5

(a) Mug (b) Distance-only (c) (0, 0, 3)cm (d) (0, 3, 3)cm (e) (3, 3, 3)cm

Figure 2: The visualization of black pentagram’s neighbor scopes by different means on mug point clouds. (b) is
generated by distance-only method. (c)-(e) are generated by the anchor-dependent method, captions below are
the coordinates of grids (red pentagrams in figure).

As a result, the output scores are less consistent with the quality of predicted grasps. As a remedy,
6-DOF GraspNet [10] uses an independent grasp evaluator to score the predicted grasps. In this
work, we design a header of grasp classification in GPNet that can be trained with other two headers
jointly. For each predicted grasp ĝ = (p, x̂, φ̂), we first calculate the neighborhood N (p), and then
concatenate the feature f ofN (p) with the predicted center and angle to form [f ; x̂; φ̂], which is used
as input of the classifier.

4.4 Training and Inference
We present in this section our used loss terms respectively for the three headers of GPNet.

Antipodal Validity Loss Grasp proposals may violate antipodal constraint of contact points [11]. To
tell the antipodal validity of any grasp proposed in the test phase, we use a binary classifier as the
first header of GPNet, and train it using positive and negative examples of antipodal validity specified
in Section 4.1. Denote l∗AP (pi, x̃j) as the label of antipodal validity for a training proposal (pi, x̃j),
and l̂AP (pi, x̃j) as its prediction, we write the cross-entropy as

LAP (pi, x̃j) = −l∗AP (pi, x̃j) log l̂AP (pi, x̃j)− (1− l∗AP (pi, x̃j)) log
(

1− l̂AP (pi, x̃j)
)
. (4)

Grasp Regression Loss When a proposal (pi, x̃j) is classified as positive by the first header, we
train the second header of GPNet to regress ∆x̃j

and φ̂, which give the grasp prediction ĝ = (pi, x̂ =

x̃j + ∆x̃j
, φ̂). Based on our pruning scheme in Section 4.1, there could exist multiple ground-truth

positive grasps {g∗+k = (pi,x
∗+ = x̃j + ∆∗+x̃j

, φ∗+k)} for the proposal (pi, x̃j), since the proposal
does not concern with the freedom of “pitch” orientation. To deal with this one-to-many mapping
ambiguity, we are inspired by exploitation on policy reward design [27], and use weighted losses for
these ground-truth grasps. Assume there exist K such positive grasps, we use the following form of
regression loss

LREG(pi, x̃j) = ‖∆∗+x̃j
−∆x̃j

‖+
1

K

K∑
k=1

ωk| cos φ̂− cosφ∗+k | (5)

where ωk is a scalar weight inversely proportional to the magnitude of | cos φ̂− cosφ∗+k |.
Grasp Classification Loss Our ground-truth grasps {g∗ ∈ G∗} on an object O are annotated by
performing simulation in the physics engine. All grasps in G∗ satisfy the antipodal constraint, but
some of them are labeled as negative, since they fail to actuate grasp trails due to collision or sliding
of the object from the gripper. Let G∗+ and G∗− respectively contain the positive and negative
grasp annotations. For any regressed grasp prediction ĝ, we label it as positive when it is closer to a
g∗+ ∈ G∗+; otherwise we label it as negative. We use a binary classifier as the third header of GPNet,
and train it using the thus obtained positive and negative samples. Denote l∗CLS(ĝ) as the label and
l̂CLS(ĝ) as the prediction, we write the cross-entropy as

LCLS(ĝ) = −l∗CLS(ĝ) log l̂CLS(ĝ)− (1− l∗CLS(ĝ)) log
(

1− l̂CLS(ĝ)
)
. (6)

Combing (4), (6), and (5), we write our overall loss function as

LGPNet = LAP + αLCLS + βLREG, (7)

where α and β are weighting parameters.

6

5 Experiment
Models and Implementation Details We use the standard PointNet++ as in [26], which gives point-
wise features. Our anchor-dependent neighborhood scheme includes an adaptive size of points, we
either upsample or downsample them to a fixed size of 100 points, where we set ε in (3) as 0.022

√
3.

The hyper-parameters in objective (7) are set to α = β = 1 respectively. For each iteration, we
feed into the network positive and negative samples according to the ratio of 3 : 7. In terms of
training parameters, all model in our experiments are trained with SGD optimizer using an initial
learning rate 0.001, weight decay 0.0001 and momentum 0.9. During test phase, we first select
those grasp proposals with positive scores of antipodal classifier, then regress corresponding grasp
predictions, and finally rank them according to their scores of confidence from the grasp classifier.
We use Non-Maximum Suppression (NMS) to obtain a diverse set of grasp predictions which ideally
distribute across the object surface. The NMS settings are as follows: for a reference prediction of
higher confidence, we remove its neighboring ones when their center predictions are within 40mm of
the reference one and each of their respective 3 angle predictions is within 60◦ of the reference one.

Evaluation Metrics and Comparisons We use two metrics of success rate@k% and coverage
rate@k% to evaluate different models quantitatively. Success rate@k% and coverage rate@k%
are similar to the metrics of precision@k and recall@k popularly used in retrieval, with the only
difference that we consider a ratio of k% over all the NMS filtered predictions for an object. We
set k = 10, 30, 50, 100. We compare our proposed GPNet with a naive version, the state-of-the-art
6-DOF GraspNet [10], and also the planar grasp method of GQCNN in DexNet [4]. For GPNet, we
also study its variants by setting different values of the resolution r in varying sizes of 3D proposal
space. The baseline of GPNet-Naive simply removes the anchor coordinates of grasp centers from
features of grasp proposals. In 6-DOF GraspNet, we follow [10] and use latent space dimension
of 2. In GQCNN, all hyper-parameters are optimally tuned to have the best performance. For all
models, we use training set of our contributed dataset for training, and rule-based and simulation
results are reported on the test set. For rule-based evaluation, we set the thresholds as ∆x = 25mm
and ∆θ = 30◦.

5.1 Ablation Studies
In Table 1, we report rule-based evaluation results of different settings with respect to success
rate@k% and coverage rate@k% on test set. Results show that increasing the resolution r of grid
corners generally improves the success rate of GPNet, depending on a proper size of 3D proposal
space; given a fixed r, enlarging the 3D proposal space improves coverage at the sacrifice of reduced
success rate. Overall, our proposed GPNet largely outperforms a naive version, and also outperforms
the state-of-the-art 6-DOF GraspNet [10] under both measures, even when it uses a final, separate
step of grasp refinement.

Table 1: Rule-based evaluation results (success rate@k% and coverage rate@k%) on the test set. Results of
GPNet variants with specific resolution r in a 3D proposal space of length b are reported.

Methods success rate@k% coverage rate@k%
10 30 50 100 10 30 50 100

6-DOF GraspNet [10] w/o refinement 0.867 0.850 0.711 0.534 0.039 0.039 0.094 0.132
w/ refinement 0.867 0.833 0.733 0.534 0.063 0.063 0.122 0.168

GPNet-Naive r = 10, b = 22cm 0.372 0.313 0.278 0.215 0.022 0.058 0.100 0.142

GPNet

r = 3, b = 22cm 0.844 0.833 0.800 0.649 0.051 0.107 0.191 0.273
r = 7, b = 22cm 0.898 0.833 0.822 0.713 0.061 0.113 0.201 0.300
r = 10, b = 22cm 0.933 0.932 0.820 0.729 0.068 0.144 0.199 0.307
r = 10, b = 10cm 0.856 0.776 0.695 0.570 0.055 0.112 0.169 0.274
r = 10, b = 30cm 0.900 0.869 0.846 0.712 0.073 0.157 0.231 0.308

To understand how results of GPNet depend on the size of training set and also the number of
annotations per object, we conduct such experiments by either using reduced training sets, or reduced
numbers of annotations per object. Table 2 reports simulation results in Pybullet based physics engine,
which show that both of the investigated factors affect the performance of GPNet significantly. In fact,
sufficiency of training samples with densely annotated grasps is crucial to achieve high success rates.

7

Table 2: Simulation results (success rate@10%) on the test set when training GPNet with different numbers of
grasp annotations per object and different ratios of the training set.

Avg. annotations per object Accuracy Ratio of training set Accuracy
10K 0.650 1/4 0.522
50K 0.730 1/2 0.700
100K 0.900 1 0.900

5.2 Comparative Simulation Results
We conduct simulation test in Pybullet based physics engine. Results of GPNet in Table 3 suggest
that to have successful grasps in practice, it is important to achieve diversity of grasp predictions by
spreading the anchor grids in a properly sized 3D proposal space. Given the proper grid resolution
and 3D proposal space, our method outperforms the state-of-the-art 6-DOF GraspNet [10]; note that
the final, separate step of grasp refinement is essential for 6-DOF GraspNet to have high success
rates; in contrast, our method gives good results in an end-to-end learning and prediction. In Table 3,
our results are also better than those of planar grasp using the GQCNN model of DexNet [4]. Planar
grasp is easier to learn but might be difficult to practically pick up objects of certain categories; this
is reflected in the lowest success rate (in fact, zero success rate) of GQCNN on the category of bowl.

Table 3: Simulation-based evaluation results (success rate@k%) on the test set. Results of GPNet variants with
specific resolution r in a 3D proposal space of length b are reported.

Methods k = 10 k = 30 k = 50 k = 100
GQCNN of planar grasp in DexNet [4] 0.783 0.742 0.663 0.464

6-DOF GraspNet [10] w/o refinement 0.433 0.367 0.311 0.207
w/ refinement 0.800 0.594 0.508 0.354

GPNet-Naive r = 10, b = 22cm 0.100 0.095 0.083 0.054

GPNet

r = 3, b = 22cm 0.644 0.637 0.561 0.371
r = 7, b = 22cm 0.767 0.711 0.656 0.557
r = 10, b = 22cm 0.900 0.761 0.723 0.588
r = 10, b = 10cm 0.494 0.433 0.393 0.253
r = 10, b = 30cm 0.833 0.702 0.679 0.574

5.3 Robot Experiment
It is a common anxiety that there exists a risk of domain discrepancy between simulated and
real environments, e.g., due to camera and robot set-ups. To examine and verify performance of
our predicted grasps in real world, we conduct grasp experiments with the models trained on our
synthetic dataset and test in real scenario using a UR5 collaborative robot with Robotiq 2F85 gripper.
Visualization of our grasp setups is given in the supplementary material. For grasps predicted by
different methods, we discard those whose actuation paths are not obtained by motion planning. The
only criterion to judge success of a grasp is that the robot elevates the object over 30cm and returns
to its original state. We conduct 3 grasp trials per object, and report the averaged results. Table 4
shows that performance from both methods of 6-DOF grasping only drops slightly compared with
simulated testing, and our GPNet outperforms the current state-of-the-art 6-DOF GraspNet [10]. We
put more experiments into supplementary material with a video recording.

8

Table 4: Comparative results of real robot test. The numbered objects are shown in the supplementary material.

Object index #1 #2 #3 #4 #5 #6 #7 #8 #9 #10
GPNet 2/3 3/3 3/3 3/3 3/3 3/3 3/3 2/3 3/3 2/3

6-DOF GraspNet [10] 2/3 2/3 3/3 2/3 1/3 0/3 2/3 3/3 1/3 3/3

Object index #11 #12 #13 #14 #15 #16 #17 #18 #19 #20 Overall
GPNet 3/3 2/3 2/3 3/3 3/3 2/3 3/3 0/3 3/3 3/3 85%

6-DOF GraspNet [10] 3/3 3/3 3/3 3/3 2/3 3/3 3/3 0/3 3/3 2/3 73%

References
[1] Ian Lenz, Honglak Lee, and Ashutosh Saxena. Deep learning for detecting robotic grasps. Int. J. Rob. Res.,

34(4-5):705–724, April 2015.

[2] Lerrel Pinto and Abhinav Gupta. Supersizing self-supervision: Learning to grasp from 50k tries and 700
robot hours. In ICRA, pages 3406–3413. IEEE, 2016.

[3] Sergey Levine, Peter Pastor, Alex Krizhevsky, Julian Ibarz, and Deirdre Quillen. Learning hand-eye
coordination for robotic grasping with deep learning and large-scale data collection. I. J. Robotics Res.,
37(4-5):421–436, 2018.

[4] Jeffrey Mahler, Jacky Liang, Sherdil Niyaz, Michael Laskey, Richard Doan, Xinyu Liu, Juan Aparicio
Ojea, and Ken Goldberg. Dex-net 2.0: Deep learning to plan robust grasps with synthetic point clouds and
analytic grasp metrics. 2017.

[5] Amaury Depierre, Emmanuel Dellandrea, and Liming Chen. Jacquard: A large scale dataset for robotic
grasp detection. In IEEE International Conference on Intelligent Robots and Systems, 2018.

[6] Xinchen Yan, Jasmine Hsu, Mohammad Khansari, Yunfei Bai, Arkanath Pathak, Abhinav Gupta, James
Davidson, and Honglak Lee. Learning 6-dof grasping interaction via deep geometry-aware 3d representa-
tions. In ICRA, pages 1–9. IEEE, 2018.

[7] Andreas ten Pas, Marcus Gualtieri, Kate Saenko, and Robert Platt. Grasp pose detection in point clouds.
The International Journal of Robotics Research, 36(13-14):1455–1473, 2017.

[8] Andreas ten Pas and Robert Platt. Using geometry to detect grasp poses in 3d point clouds. In Robotics
Research, pages 307–324. Springer, 2018.

[9] Hongzhuo Liang, Xiaojian Ma, Shuang Li, Michael Görner, Song Tang, Bin Fang, Fuchun Sun, and Jianwei
Zhang. Pointnetgpd: Detecting grasp configurations from point sets. In 2019 International Conference on
Robotics and Automation (ICRA), pages 3629–3635. IEEE, 2019.

[10] Arsalan Mousavian, Clemens Eppner, and Dieter Fox. 6-dof graspnet: Variational grasp generation for
object manipulation. arXiv preprint arXiv:1905.10520, 2019.

[11] I-Ming Chen and Joel W. Burdick. Finding antipodal point grasps on irregularly shaped objects. Robotics
and Automation, IEEE Transactions on, 9:507 – 512, 09 1993.

[12] D. Kappler, B. Bohg, and S. Schaal. Leveraging big data for grasp planning. In Proceedings of the IEEE
International Conference on Robotics and Automation, May 2015.

[13] Abhinav Gupta, Adithyavairavan Murali, Dhiraj Prakashchand Gandhi, and Lerrel Pinto. Robot learning in
homes: Improving generalization and reducing dataset bias. In Advances in Neural Information Processing
Systems 31, pages 9094–9104. 2018.

[14] Jeffrey Mahler, Florian T Pokorny, Brian Hou, Melrose Roderick, Michael Laskey, Mathieu Aubry, Kai
Kohlhoff, Torsten Kröger, James Kuffner, and Ken Goldberg. Dex-net 1.0: A cloud-based network of
3d objects for robust grasp planning using a multi-armed bandit model with correlated rewards. In IEEE
International Conference on Robotics and Automation (ICRA), pages 1957–1964. IEEE, 2016.

[15] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object detection
with region proposal networks. In Advances in neural information processing systems, pages 91–99, 2015.

[16] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once: Unified, real-time
object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages
779–788, 2016.

[17] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu, and
Alexander C Berg. Ssd: Single shot multibox detector. In European conference on computer vision, pages
21–37. Springer, 2016.

[18] Fu-Jen Chu, Ruinian Xu, and Patricio A Vela. Real-world multiobject, multigrasp detection. IEEE Robotics
and Automation Letters, 3(4):3355–3362, 2018.

9

[19] Douglas Morrison, Peter Corke, and Jürgen Leitner. Closing the loop for robotic grasping: A real-time,
generative grasp synthesis approach. arXiv preprint arXiv:1804.05172, 2018.

[20] Joseph Redmon and Anelia Angelova. Real-time grasp detection using convolutional neural networks.
pages 1316–1322, 2015.

[21] Mark Van der Merwe, Qingkai Lu, Balakumar Sundaralingam, Martin Matak, and Tucker Hermans.
Learning continuous 3d reconstructions for geometrically aware grasping. arXiv preprint arXiv:1910.00983,
2019.

[22] Simon L Altmann. Rotations, quaternions, and double groups. Courier Corporation, 2005.

[23] Erwin Coumans and Yunfei Bai. Pybullet, a python module for physics simulation for games, robotics and
machine learning. GitHub repository, 2016.

[24] Manolis Savva, Angel X Chang, and Pat Hanrahan. Semantically-enriched 3d models for common-
sense knowledge. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
Workshops, pages 24–31, 2015.

[25] Carlo Ferrari and John F Canny. Planning optimal grasps. In ICRA, volume 3, pages 2290–2295, 1992.

[26] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hierarchical feature
learning on point sets in a metric space. In Advances in neural information processing systems, pages
5099–5108, 2017.

[27] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

[28] Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo Li, Silvio
Savarese, Manolis Savva, Shuran Song, Hao Su, et al. Shapenet: An information-rich 3d model repository.
arXiv preprint arXiv:1512.03012, 2015.

[29] Bianca Falcidieno. Aim@shape. http: // www. aimatshape. net/ ontologies/ shapes/ , 2005.

[30] Paul-Louis George. Gamma. http: // www. rocq. inria. fr/ gamma/ download/ download. php ,
2007.

[31] Khaled Mamou, E Lengyel, and Ed AK Peters. Volumetric hierarchical approximate convex decomposition.
Game Engine Gems 3, pages 141–158, 2016.

[32] Blender Online Community. Blender—a 3d modelling and rendering package, 2014.

[33] Florian T. Pokorny and Danica Kragic. Classical grasp quality evaluation: New theory and algorithms. In
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2013.

[34] Brian Mirtich and John Canny. Easily computable optimum grasps in 2-d and 3-d. In Proceedings of the
1994 IEEE International Conference on Robotics and Automation, pages 739–747. IEEE, 1994.

[35] Andrew T Miller and Peter K Allen. Examples of 3d grasp quality computations. In Proceedings 1999
IEEE International Conference on Robotics and Automation (Cat. No. 99CH36288C), volume 2, pages
1240–1246. IEEE, 1999.

[36] Nancy S Pollard. Closure and quality equivalence for efficient synthesis of grasps from examples. The
International Journal of Robotics Research, 23(6):595–613, 2004.

[37] Yu Zheng and Wen-Han Qian. Coping with the grasping uncertainties in force-closure analysis. The
International Journal of Robotics Research, 24(4):311–327, 2005.

A Illustration of Grasp Parameterizations

We present illustration of the 6 degrees-of-freedom (DOFs) grasp parameterization in Fig.3-(a). In Fig.3-(b), we
illustrate terms that are used in computation of analytic score for a grasp candidate.

B The Dataset Acquisition Framework

We present in this section our framework to produce synthetic object grasp dataset using physics engine of
PyBullet [23]. Over the years the community has collected online repositories of categorized 3D object models
[28, 29, 30]. Among them, the ShapeNetSem dataset [24] contains annotations of physical attributes such as
material density and static friction coefficient, which are essential for use in our grasp annotation framework.

The set-up of simulation environment We consider a scenario of grasping in PyBullet a singulated object
resting on a plane using parallel-jaw gripper. Given an object model in ShapeNetSem, we first normalize the
model such that the longest side of its bounding box is smaller than 150mm and the shortest side is larger than
60mm, while keeping the aspect ratio fixed. We then drop the model from a random position and orientation

10

http://www.aimatshape.net/ontologies/shapes/
http://www.rocq.inria.fr/gamma/download/download.php

(a) (b)

𝒄𝒄1 𝒄𝒄2
𝒏𝒏1 𝒏𝒏2

𝒘𝒘

𝜽𝜽

𝒙𝒙
𝒄𝒄1 𝒄𝒄2

𝒏𝒏1 𝒏𝒏2
𝒙𝒙

𝒛𝒛
𝝆𝝆1 𝝆𝝆2

Figure 3: (a) Illustration of the 6-DoF grasp parameterization. The two contact points are denoted as c1 and c2,
with the corresponding normal vectors n1 and n2. A grasp candidate is parameterized by gripper center x and
gripper orientation θ. An additional freedom of gripper opening width w is sometimes used in the literature. (b)
Illustration for analytic score computation, where z is the object mass center, ρi is the vector from the torque
origin (usually the mass center) to the i-th contact point.

above the plane, and save the scene configuration (i.e., object position and pose) once the object stably stands 2.
The saved scene configuration is independently used for two subsequent processes, i.e., simulation of grasp trials
and rendering of depth (and RGB) images under random views. We use Blender [32] for image rendering.

Sampling of grasp candidates Our annotation generation starts with sampling parameterized grasp candidates
for any object stably placed in a scene configuration, a process more involved than sampling simplified candidates
as in [5]. Specifically, we first sample a contact point c1 ∈ R3 on mesh model of the object surface S, and
correspondingly sample a direction v ∈ S2 uniformly at random from the friction cone [33] associated with c1
(more details in Appendix C); we then compute the contact point c2 = c1 + η∗v paired with c1, where η∗ is
set to ensure that c2 is on S; we choose to keep the pair (c1, c2) by checking whether it satisfies the antipodal
constraints of v>n1 ≤ cos(arctan(γ)) and v>n2 ≤ cos(arctan(γ)) [11], where n1 ∈ S2 and n2 ∈ S2 are
surface normals respectively at c1 and c2, and γ denotes static friction coefficient of the surface. Each kept pair
of antipodal contacts determines the gripper center x = (c1 + c2)/2, and the “roll” and “yaw” orientations of θ
(and additionally the width w); we finally sample the left free parameter of “pitch” orientation to obtain a group
of grasp candidates that share the same (c1, c2). We use the above procedure to sample multiple pairs of contact
points.

Generation of grasp annotations Given a grasp candidate, we call inbuilt PyBullet functions to plan and
actuate the grasp. If the gripper does not collide with ground, we close the gripper until PyBullet detects any
contacts where each finger of the gripper touches on the object; otherwise it is considered as a collided grasp
candidate. If the contacts detected by PyBullet are almost identical to the pair of antipodal contacts from which
the grasp candidate is generated, and the gripper opens to a width roughly the same as w, we step forward to lift
the object to a certain height and move it around. The grasp candidate g is annotated as success if the object
does not slide from the gripper and fall down during the lifting process; otherwise g is annotated as failure. In
this work, we also compute an accompanying analytic score for each g. Appendix C gives the details.

Data clean-up Grasp candidates in the preceding section are generally sampled uniformly at random from the
space of contact pairs that satisfy antipodal constraints, which may produce a plenty of candidates non-reachable
by the parallel-jaw gripper — the gripper may collide with either the ground or faces of object meshes. We
remove those contact pairs too close to the ground, while leaving other non-reachable candidates to be dealt
with by PyBullet’s collision-handling functionality. Successful grasps usually concentrate on certain areas of an

2Since PyBullet cannot directly load concave triangle mesh models as collision into simulation environment,
we use Hierarchical Approximate Convex Decomposition [31] to decompose each of concave mesh models in
ShapeNetSem as several convex components.

11

object surface. To remove nearly duplicate ones, for any two annotated grasps, we keep one of them when their
gripper center positions are too close and grasp orientations are almost the same. This also makes obtained grasp
annotations distribute more diverse over the object surface.

C Analytic Score Computation of Grasp Candidates

There exist different analytic metrics to evaluate robotic object grasps [34, 35, 36]. We use the Ferrari-Canny
metric [25] in this work. Given a grasp candidate g that is specified by a contact pair (c1, c2), we approximate
the fiction cone at ci, i ∈ {1, 2}, into L facets, as illustrated in Fig.4, with the set of vertices defined as

Fi = {ni + γ cos(
2πj

L
)ti,1 + γ sin(

2πj

L
)ti,2 | j = 1, . . . , L}, (8)

where ti,1 ∈ S2 and ti,2 ∈ S2 are the two tangent vectors at ci. Given object mass center z, each force
vector fi,j ∈ Fi exerts a corresponding torque τi,j = c(ρi × fi,j), where ρi = ci − z and c is an adaptive
parameter to make the torque invariant to scale of the object. Appending the corresponding force and torque
gives the wrench wi,j = [f>i,j , τ

>
i,j]
> ∈ R6. Under the soft finger model [37], we add an extra wrench vector

wi,L+1 = [0>,n>i]
> ∈ R6, and construct the grasp wrench space (GWS) [25] as

W = ConvexHull
(
∪2

i=1{wi,1, . . . ,wi,L+1}
)
. (9)

Let s(g) be the analytic score to be annotated. The grasp g is not force closure whenW does not contain the
origin of 6-dimensional wrench space, i.e., 0 6∈ W , and we annotate s(g) = −1. Conversely, g is considered as
force closure and we compute the analytic score by the distance between the origin and the nearest facet ofW
[25], namely radius of the maximum hypersphere centered at the origin and contained inW

s(g) = argmaxεB(ε)
s.t. B(ε) = {w ∈ R6 | ||w||2 < ε}, B(ε) ⊆ W. (10)

𝑐𝑐

(a)

𝑓𝑓𝑛𝑛 𝑓𝑓

𝑐𝑐

(b)

𝑓𝑓
𝑓𝑓0

𝑓𝑓1

𝑓𝑓8
𝑓𝑓7

𝑓𝑓6

Figure 4: (a) The force f exerted at contact c must lie within the cone otherwise it will cause slippage. (b) In
order to simplify the grasp analysis process, we approximate the friction cone with a sided pyramid. f is a
convex combination of {f0, ..., f8}

D Additional Material for Robot Experiments

Figures 5a and 5b show our grasp setup and the 20 objects to be grasped.

12

(a) Objects for real test (b) Robot disposition

Figure 5: Real test setting.

13

	1 Introduction
	2 Related Works
	3 The Problem of Visual Grasp Learning
	3.1 Parameterizations and Learning
	3.2 Synthetic Dataset Construction

	4 Grasp Proposal Networks
	4.1 Diverse and Flexible Grasp Proposals via 3D Grid Anchors
	4.2 Extraction of Grasp Features from Anchor-dependent Local Surface Points
	4.3 Scoring of Regressed Grasps
	4.4 Training and Inference

	5 Experiment
	5.1 Ablation Studies
	5.2 Comparative Simulation Results
	5.3 Robot Experiment

	A Illustration of Grasp Parameterizations
	B The Dataset Acquisition Framework
	C Analytic Score Computation of Grasp Candidates
	D Additional Material for Robot Experiments

